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1. Phys. A Math Gen. 26 (1993) 60674071. tinted in h e  UK 

On the Dirac equation with anomalous magnetic moment 
term and a plane electromagnetic field 

Yousef I Salamin 
Physics Department. Birzeif University. PO Box 14, BimiS Wesl Bank, via Israel 

Received 7 lune 1993 

Abslract We salve the non-minimally coupled Dm equation for a panicle with an anomalous 
magnetic moment in the presence of a plane electromagnetic wave, direotly and &om first 
principles. The exact wavefmctiah obtained in this way, is shown lo reduce lo the V o h v  state 
when the particle’s anomaly is set equal lo mo. Other Limiting cases are also mnsidered and 
Iheir importance is pinled out 

1. Introduction 

The exact solution of the Dirac equation for an electron in the field of a plane electromagnetic 
wave was carried out by Volkov [I]  a long time ago. In modem textbooks this is &ne 
by solving the minimally coupled second-order Dirac equation [2,3] in the presence of an 
external plane electromagnetic field. The state of the electron obtained in this way, known 
as a Volkov state, has been used extensively in exploring numerous quantum phenomena 
such as bremsstrahlung and photoionization [4]. In particular, in fusion reseaffih, where 
intense laser beams are used, the relativistic conditions in which the atoms are quickly 
ionized make a relativistic treatment necessary. In these conditions, coupling to the plane 
electromagnetic field of the laser can be extremely strong, and one is tempted to go beyond 
the minimal coupling scheme. 

In this paper, we obtain an exact solution of the D i m  equation for a particle possessing 
an anomalous magnetic moment in addition to its change. The coupling in this generalized 
case is non-minimal and leads to a modified state for the unbound particle, which reduces 
to the Volkov state when the particle’s anomaly is set equal to zero. 

In 1968, Chakrabarti 1.51 constructed the solution to this problem by working out a 
dynamical representation of the Poincar6 algebra of the system suitably generalized from 
the corresponding algebra of the free particle case. The solution thus obtained has been 
studied extensively and used in numerous applications. 
More recent work related to the problem at hand has been published by Brown and 

Kowalski [6] in 1984. In 1991. Alan and Barut [7] advanced a solution to the same 
problem working with the first-order D i m  equation in a Weyl representation. 

In this paper, we obtain the desired solution in the standard representation and from 
first principles, guided by the derivation in the textbooks [2,3] of the Volkov state, 

The paper is organized as follows. In section 2, we consbuct the non-minimally coupled 
second-order D i m  equation from the first-order equation and solve it along the same lines 
as is usually done for the case when only minimal coupling is employed. In section 3 we 
consider a few special cases, namely the case of pure charge and no anomalous magnetic 
moment and show that this one is nothing but the Volkov state, and then we consider the 
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case of a neutral Dirac particle like a neutron or neutrino. We end section 3 by considering 
the weak-field approximation. 

2. The equation and its solution 

Throughout this paper, Loren&-Heaviside units, whereby f i  = c = 1, and the m&c 
g’” = (1, -1, -1, -1) will be used. We employ Feynman slash notation d = yoao - y  . a 
where the yfi are the familiar D i m  gamma matrices. The scalar product of four-vectors 
will be denoted by a dot, as in a .  b = a’b,. 

Dirac’s first-order equation for a particle of mass m and charge e in the presence of a 
plane electromagnetic field, in the minimal coupling scheme, reads 

(1) 

where the ap denote the components of the four-gradient and A(6)  = (0, A) is the external 
elechomagnetic four-vector potential assumed to be a function of 6 = k . r  only and satisfying 
the transversality condition (Loren& gauge) k . A = 0. Here k = (ko, I C )  is the plane wave 
propagation four-vector and x = (I, r )  is the coordinate four-vector of the particle. 

By operating on (1) with [cia - e A )  - m], a second-order equation can be obtained 
whose plane wave solution is known as the Volkov state [3]. 

[(il - e h )  - m]@ = 0 

where U is a free particle bispinor satisfying the normalization condition 

iiu = 2m (ii = utyo)  (3) 

and 

In (4). and everywhere in the remainder of this paper, p = (PO, p) is the (constant) energy- 
momentum four-vector of the particle. 

Our starting point for treating a D i m  particle with an anomalous magnetic moment in 
the presence of a plane wave field is the non-minimally coupled first-order equation [2] 

( 5 )  

In this equation U = $ c e / h ,  where K is the particle’s anomaly (for an electron 
K = i(g - 2) = @/ZII), up” = fi[yr, y ” ]  and F,, = a,A, -&A,. 

Next we obtain the corresponding second-order equation by operating on (5) with 
[cia - e h )  + m].  The result of doing so is 

(6) 

We now simplify the various terms in (6) using the fact that kZ = 0. Some of the terms in 
equation (6) take the following forms, after some algebra 

[cia - ed) - m + au”“FF,]@ = 0. 

M i l  -eh)’ - m’] -t a[(i# - eA) + m]u’”F,,,J@(x) = 0. 

F,“ = a,A, - & A ,  = k,A: -k ,A;  (7) 
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where primes in (7). and throughout the remainder of this paper, denote differentiation with 
respect to 5 = k . x. Noting also that k . A‘ = d(k . A)/@ = 0. it can be shown easily that 

a p ” F M w  = 2$A’. (8) 

Furthermore 121 

(ia - eh)’ - m2 = -a2 - 2ie(A . a) + e2A2 - m2 - iePA‘ (9) 

where a2 = aea,. The remaining terms reduce to 

i#a””F,,, = -4A‘(k. a) + 4P(A‘. a) - 2PA‘g 

and 

- eAaPYF,,, = 2ietAA‘. (11) 

Putting (9H11) back into (6) we arrive at 

0 = {-a2 - Zie(A ’8) + e2A2 - m2 - iePA‘ 

+ u[-4A’(k 3) +4P(A’. a) - WA‘il+ 2iePAA’ +2iPA’ll*(x). (12) 

This is the desired second-order equation we set out to find We look for a solution of 
equation (12) of the plane wave form 

@(x) = e-’PXF(5). (13) 

When (13) is substituted into (12). a simple first-order differential equation for F ( c )  is 
obtained which we solve immediately. To this end, we work out, in what follows, some of 
the terms of this equation: 

When equations (13H19) are used in (12). 

2i(k . p ) F ’  = (2e(p.A) -e2A2+i[ePA‘-4u(k~p)A’+2aP~A’-2eutAA’-2muPA’11F. 
(20) 

This is a simple first-order differential equation for F ( 5 ) .  Formal integration of (20) is 
straightforward and yields 

F ( k  , x) = e-(uy+Pd+~~l+aYlroF(--oo) (21) 
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where 

e 
P = K -  

2m 

and S is as given in equation (4). F(-w) is a suitably normalized bispinor assuming that 
the external plane wave field is Nmed on slowly in the distant past. 

Finally, the wavefunction of a Dirac particle with four-momentum p ,  charge e and an 
anomalous magnetic moment, in the presence of an external plane wave electromagnetic 
field, becomes 

+p(r) = e-W+BC+~Y4+W#) F(-oo)e-i(&--“, (26) 

t,kp(x) as given by (26) is exact, since no approximation has been used in its derivation. It 
is also general, in the sense that it applies no matter how strong the external field is. Some 
limiting cases will be considered in the following section. 

3. Special cases 

Handling the interaction of a particle with an external electromagnetic field within the 
context of the minimal coupling scheme ignores altogether the fact that the particle possesses 
an anomalous magnetic moment. In other words, the Volkov state of a particle does not take 
into account the small, but maybe important, contribution to the particle’s dynamics coming 
from its interaction with the field through this part of its total magnetic moment. For our 
general exact solution (26) of the non-minimally coupled Dim equation to be correct, it 
should necessarily yield the Volkov state when K. the particle’s anomaly, is set equal to 
zero. When this is done, (22H25) give a = p = 6 = 0 and U = -e/(= . p). With this at 
hand, equation (26) reduces to 

$ (’) = e-u#d F(-oo)e-i(P’I-S) 
P 

which is the Volkov state [3], provided F(-oo)  is identified with the normalized free 
bispinor U/-. In (27). use has been made of the identity 

(#A)“ = 0 = (t)” for n > 2. (28) 

For a neutral spin-4 particle, like the neutrino or neutron, which interacts with an 
external electromagnetic field only via an anomalous magnetic moment, the solution can be 
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written down by setting e = 0 in (22)-(25) and using the resulting values of cr. ,B, U and S 
in (26). The result i s  

$&)(neutral particles) = 1 - ( 
Finally, we take up the weak-field approximation (MA). This is the case when the intensity 
of the laser field is small such that the resulting quiver energy E, of the particle, defined as 
its average classical energy in an oscillating electric field, is comparable to its rest energy 
EO. Retaining only terms of order one in the expansion of the first exponential in (26) 
leaves one with 

$p(x)(WFA) it: 11 - (4’ +,BA + uPA +S”P))F(-oo)e-i‘P’’-S‘ . (30) 

4. Conclusion 

We have solved the Dirac equation exactly for a particle with an anomalous magnetic 
moment interacting with a plane electromagnetic field. The resulting wavefunction has 
been shown to reduce to the Volkov state when the particle’s anomaly is set equal to zero. 
Two more special cases have been considered. For a neutral particle, a wavefunction has 
been found which may be of some interest to work on the solar neutrino problem. A neutral 
particle interacts with radiation only through its anomalous magnetic moment. Our final 
special case is that of a weak field. This particular case may be of importance for describing 
the electron in its bound state [8], before photoionization takes place, as the field strength 
builds up, or for fields weak enough to cause deformations in the atom and no ionization 
at all. 
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